ı		•	-	7	•	/	ı
ı	E)-	_	7 –	-/	•	Ĭ
	_						

Roll No.

Total No. of Questions: 31]

[Total No. of Printed Pages: 8

12th ARF(SZ)JKUT2024-25 307-X

MATHEMATICS

Time: 3 Hours]

[Maximum Marks: 80

SECTION-A

(OBJECTIVE TYPE QUESTIONS/

MULTIPLE CHOICE QUESTIONS)

1 each

1. If

$$\begin{vmatrix} x & 3 \\ 4 & -2 \end{vmatrix} = 0$$

then x is equal to :

- (A) 6
- (B) -6
- (C) 4
- (D) -4
- 2. For a square matrix A, $A(adj A) = \dots$

12"ARF(SZ)JKUT2024-25-307-X

Turn Over

B-7-X

- 3. Derivative of $e^{\log \tan x}$ w.r.t. x is :
 - (A) $\cot x$
 - (B) $\tan x$
 - (C) $\sec^2 x$
 - (D) $\csc^2 x$
- 4. Second derivative of $\log (\log x)$ w.r.t. x is :
 - $(A) \quad \frac{1}{x \log x}$

(B) $\frac{1}{\log x}$

(C) $\frac{1}{x}$

(D) $\frac{-(1+\log x)}{(x\log x)^2}$

5. The function:

$$f(x) = \frac{|x|}{x}, \qquad x \neq 0$$
$$= 0, \qquad x = 0$$

is discontinuous at x = 0.

(True/False)

- **6.** Maximum value of $\sin x$ is :
 - (A) 1
 - (B) -1
 - (C) 2
 - (D) -2

12hARF(SZ)JKUT2024-25-307-X

B-7-X

7. $\int \tan x \, dx$ is equal to :

- (A) $\log \cos x + C$
- (B) $\log \sec x + C$
- (C) $\log \sin x + C$
- (D) $\log \csc x + C$
- 8. Two lines are parallel if their direction ratios are
- 9. Projection of \hat{i} on \hat{j} is zero.

(True/False)

10. Define optimal solution.

SECTION-B

(VERY SHORT ANSWER TYPE QUESTIONS) 2 each

11. Show that the relation R in the set {1, 2, 3} given by

$$R = \{(1, 2), (2, 1)\}$$

is symmetric but neither reflexive nor transitive.

12. Prove that:

$$3\sin^{-1} x = \sin^{-1} (3x - 4x^3)$$
$$x \in \left[-\frac{1}{2}, \frac{1}{2} \right]$$

12thARF(SZ)JKUT2024-25-307-X

Turn Over

- 13. The length 'x' of a rectangle is decreasing at the rate of 3 cm/minute and the width 'y' is increasing at the rate of 2 cm/minute. When x = 10 cm and y = 6 cm, find the rate of change of the perimeter.
- 14. Find the unit vector in the direction of the vector

$$\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$$

15. Find $|\vec{x}|$, if for a unit vector \vec{a} ,

$$(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 12$$

16. Find :

$$\int \frac{\sin x}{1 + \cos x} \, dx$$

17. Evaluate:

$$\int_2^3 \frac{x \, dx}{x^2 + 1}$$

12thARF(SZ)JKUT2024-25—307-X

- 18. A coin is tossed three times. If E is the event 'head on third toss' and F is the event 'heads on first two tosses'. Find P(E | F).
- 19. Let E and F be two events with $P(E) = \frac{3}{5}$, $P(F) = \frac{3}{10}$ and $P(E \cap F) = \frac{1}{5}$. Are E and F independent?
- 20. Find the product:

$$\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$

SECTION-C

(SHORT ANSWER TYPE QUESTIONS)

4 each

21. Find the relationship between a and b so that the function f defined by https://www.jkboseonline.com

$$f(x) = ax + 1 \text{ if } n \le 3$$
$$= bx + 3 \text{ if } x > 3$$

is continuous at x = 3.

22. Evaluate:

$$\int_0^1 x(1-x)^n \ dx$$

23. Differentiate $(\log x)^x + x^{\log x}$ w.r.t. x.

12thARF(SZ)JKUT2024-25-307-X

Turn Over

24. Find the shortest distance between the lines :

$$\vec{r} = (1-t)\hat{i} + (t-2)\hat{j} + (3-2t)\hat{k}$$

and

$$\vec{r} = (s+1)\hat{i} + (2s-1)\hat{j} - (2s+1)\hat{k}$$

25. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that :

$$\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$$

find the value of

$$\overrightarrow{a}$$
, \overrightarrow{b} + \overrightarrow{b} , \overrightarrow{c} + \overrightarrow{c} , \overrightarrow{a}

26. Solve the linear programming problem graphically:

$$Maximize z = 3x + 2y$$

Subject to:

$$x + 2y \le 10,$$

$$3x + y \le 15,$$

$$x, y \ge 0.$$

12hARF(SZ)JKUT2024-25-307-X

B-7-X

27. Let A and B be two sets. Show that :

$$f: A \times B \rightarrow B \times A$$

such that f(a, b) = (b, a) is bijective function.

28. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?

SECTION-D

(LONG ANSWER TYPE QUESTIONS)

6 each

29. For a matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

show
$$A^3 - 6A^2 + 5A + 11I = 0$$
.

Or

Solve the system of linear equations, using matrix method:

$$2x + 3y + 3z = 5$$
$$x - 2y + z = -4$$
$$3x - y - 2z = 3$$

Turn Over

30. Evaluate:

$$\int_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi \, d\phi$$

Evaluate:

$$\int \frac{x \cos^{-1} x}{\sqrt{1 - x^2}} \, dx$$

31. Find the local maxima and local minima, if any, of the function:

$$f(x) = \sin x - \cos x$$
, $0 < x < 2\pi$.

Or

Find two positive numbers x and y such that x + y = 60 and xy^3 is maximum.

12thARF(SZ)JKUT2024-25-307-X