	_
A-6-A	

Roll No.

Total No. of Questions: 29

[Total No. of Printed Pages: 8

12thSZARJD22 6006-A

MATHEMATICS

Time: 2.30 Hours]

[Maximum Marks: 100

Section-A

(Multiple Choice Questions)

1 each

- 1. The relation R in the set $\{1, 2, 3\}$ given by $R = \{(x, y) | x < y, x, y \in A\}$ is:
 - (A) Reflexive

(B) Symmetric

(C) Transitive

- (D) Anti-symmetric
- 2. The principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is :
 - $(A) \quad \frac{\pi}{4}$

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{3}$

(D) $\frac{3\pi}{4}$

Two matrices A and B of the same order are said to be equal, if:

$$_{(A)} a_{ij} = 0$$

₹.

$$(B) \quad b_{ij} = 0$$

$$(C) \ a_{ij} + b_{ij} = 0$$

(D)
$$a_{ij} = b_{ij}$$
 for all i, j

The direction cosines of a unit vector along x-axis are: 4.

(A) (1, 0, 0)

(B) (0, 1, 0)

(C) (0, 0, 1)

(D) (1, 1, 1)

Section-B

(Very Short Answer Type Questions)

2 each

Find the values of x, y and z from the following equation : 5.

$$\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$

Evaluate: 6.

$$\int (ax^2 + bx + c)dx$$

Find the rate of change of area of a circle with respect to its radius 7. when r = 5 cm.

12thSZARJD22-6006-A

- 8. Form the differential equation representing the family of curve $y = mx^2$, where m is arbitrary constant.
- 9. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} \hat{j} + 8\hat{k}$.
- 10. Solve the following L.P.P. graphically:

Maximise:

$$Z = 3x + 4y$$

Subject to constraints:

$$x + y \le 4,$$

$$x \ge 0, y \ge 0$$

- 11. Two cards are drawn at random and without replacement from a pack of 52 playing cards. Find the probability that both the cards are black.
- 12. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{5}$, find $P(A \cap B)$ if A and B are independent events.

Section-C

(Short Answer Type Questions)

4 each

- 13. Show that $f: (-1 \ 1) \to \mathbb{R}$ given by $f(x) = \frac{x}{x+2}$ is one-one. Find the inverse of the function $f: (-1 \ 1) \to \mathbb{R}$ ange of f.
- 14. Solve :

$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$$

- 15. For the matrix A and B verify that (AB)' = B'A', $A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$.
- 16. Find the relationship between a and b so that the function f defined by:

$$f(x) = \begin{cases} ax+1 & \text{if } x \le 3\\ bx+3 & \text{if } x > 3 \end{cases}$$

is continuous at x = 3.

- 7. Find the intervals in which the function f given by $f(x) = 4x^3 6x^2 72x + 30$ is:
 - (a) Strictly increasing
 - (b) Strictly decreasing

- 18. Find the equations of the tangent and normal to the given curve at the indicated point $y = x^4 6x^3 + 13x^2 10x + 5$ at (0, 5).
- 19. Find the general solution of the differential equation :

$$\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$$

20. Find the area of the region bounded by the ellipse:

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

- 21. Find $|\overrightarrow{a} \times \overrightarrow{b}|$ if $\overrightarrow{a} = \hat{i} 7\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} 2\hat{j} + 2\hat{k}$.
- 22. If $\overrightarrow{a} = 5\hat{i} \hat{j} 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} 5\hat{k}$, then show that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$ are perpendicular.
- 23. Solve the following problem graphically:

Minimise and maximise: Z = 3x + 9y

Subject to the linear constraints:

$$x + 3y \le 60, \ x \le y,$$

and $x + y \ge 10, x \ge 0, y \ge 0$

Section-D

(Long Answer Type Questions)

24. By using properties of determinants prove that :

$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix} = a^3$$

Or

If
$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
, then verify that $A(\text{adj } A) = |A|I$. Also find A^{-1} .

25. Find $\frac{dy}{dx}$ of the function $x^y + y^x = 1$.

Or

If $y = 3 \cos(\log x) + 4 \sin(\log x)$, show that :

$$x^2y_2 + xy_1 + y = 0$$

26. Integrate the rational fraction:

$$\frac{2x-3}{(x^2-1)(2x+3)}$$

Or

(/

Using the properties of definite integrals evaluate:

$$\int_{-5}^{5} |x+2| dx$$

27. Find the general solution of the differential equation :

$$x\frac{dy}{dx} + 2y = x^2 \log x$$

Or

Show that the differential equation $(x^2 - y^2)dx + 2xydy = 0$ is homogeneous and solve it.

28. Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2, 2, 1).

Or

Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 10x + 2y - 11z = 3.

29. Find the probability distribution of number of doublets in three throws of a pair of dice.

Or

Two balls are drawn at random with replacement from a box containing 10 black balls and 8 red balls. Find the probability that:

- (a) Both balls are red
- (b) First ball is black and second is red
- (c) One of them is black and other is red